Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Microbiol Mol Biol Rev ; 88(1): e0005222, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38451081

RESUMO

SUMMARYGroup A Streptococcus (GAS), also known as Streptococcus pyogenes, is a clinically well-adapted human pathogen that harbors rich virulence determinants contributing to a broad spectrum of diseases. GAS is capable of invading epithelial, endothelial, and professional phagocytic cells while evading host innate immune responses, including phagocytosis, selective autophagy, light chain 3-associated phagocytosis, and inflammation. However, without a more complete understanding of the different ways invasive GAS infections develop, it is difficult to appreciate how GAS survives and multiplies in host cells that have interactive immune networks. This review article attempts to provide an overview of the behaviors and mechanisms that allow pathogenic GAS to invade cells, along with the strategies that host cells practice to constrain GAS infection. We highlight the counteractions taken by GAS to apply virulence factors such as streptolysin O, nicotinamide-adenine dinucleotidase, and streptococcal pyrogenic exotoxin B as a hindrance to host innate immune responses.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Humanos , Infecções Estreptocócicas/patologia , Imunidade Inata , Fatores de Virulência , Fagocitose
2.
PLoS Pathog ; 19(3): e1011241, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930690

RESUMO

Dengue virus (DENV) infection can induce life-threatening dengue hemorrhagic fever/dengue shock syndrome in infected patients. DENV is a threat to global health due to its growing numbers and incidence of infection in the last 50 years. During infection, DENV expresses ten structural and nonstructural proteins modulating cell responses to benefit viral replication. However, the lack of knowledge regarding the cellular proteins and their functions in enhancing DENV pathogenesis impedes the development of antiviral drugs and therapies against fatal DENV infection. Here, we identified that integrin-linked kinase (ILK) is a novel enhancing factor for DENV infection by suppressing type I interferon (IFN) responses. Mechanistically, ILK binds DENV NS1 and NS3, activates Akt and Erk, and induces NF-κB-driven suppressor of cytokine signaling 3 (SOCS3) expression. Elevated SOCS3 in DENV-infected cells inhibits phosphorylation of STAT1/2 and expression of interferon-stimulated genes (ISGs). Inhibiting ILK, Akt, or Erk activation abrogates SOCS3 expression. In DENV-infected mice, the treatment of an ILK inhibitor significantly reduces viral loads in the brains, disease severity, and mortality rate. Collectively, our results show that ILK is a potential therapeutic target against DENV infection.


Assuntos
Vírus da Dengue , Dengue , Interferon Tipo I , Animais , Camundongos , Vírus da Dengue/fisiologia , Proteínas Proto-Oncogênicas c-akt , Replicação Viral , Interferon Tipo I/uso terapêutico
3.
Commun Biol ; 6(1): 124, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721030

RESUMO

Group A Streptococcus (GAS) is a strict human pathogen possessing a unique pathogenic trait that utilizes the cooperative activity of NAD+-glycohydrolase (NADase) and Streptolysin O (SLO) to enhance its virulence. How NADase interacts with SLO to synergistically promote GAS cytotoxicity and intracellular survival is a long-standing question. Here, the structure and dynamic nature of the NADase/SLO complex are elucidated by X-ray crystallography and small-angle scattering, illustrating atomic details of the complex interface and functionally relevant conformations. Structure-guided studies reveal a salt-bridge interaction between NADase and SLO is important to cytotoxicity and resistance to phagocytic killing during GAS infection. Furthermore, the biological significance of the NADase/SLO complex in GAS virulence is demonstrated in a murine infection model. Overall, this work delivers the structure-functional relationship of the NADase/SLO complex and pinpoints the key interacting residues that are central to the coordinated actions of NADase and SLO in the pathogenesis of GAS infection.


Assuntos
Streptococcus , Estreptolisinas , Humanos , Animais , Camundongos , Proteínas de Bactérias , NAD+ Nucleosidase
4.
mBio ; 13(4): e0123322, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35862783

RESUMO

Group A Streptococcus (GAS), a deleterious human-pathogenic bacterium, causes life-threatening diseases such as sepsis and necrotic fasciitis. We recently reported that GAS survives and replicates within blood vessel endothelial cells because these cells are intrinsically defective in xenophagy. Because blood vessel endothelial cells are relatively germfree environments, specific stimulation may be required to sufficiently induce xenophagy. Here, we explored how vascular endothelial growth factor (VEGF) promoted xenophagy and lysosomal activity in endothelial cells. These effects were achieved by amplifying the activation of TFEB, a transcriptional factor crucial for lysosome/autophagy biogenesis, via cAMP-mediated calcium release. In a mouse model of local infection with GAS, the VEGF level was significantly elevated at the infection site. Interestingly, low serum VEGF levels were found in a mouse model of invasive bacteremia and in patients with severe GAS-induced sepsis. Moreover, the administration of VEGF improved the survival of GAS-infected mice. We propose a novel theory regarding GAS infection in endothelial cells, wherein VEGF concentrations in the systemic circulation play a critical role. IMPORTANCE Sepsis caused by Streptococcus pyogenes is a life-threatening condition. Blood vessel endothelial cells should serve as a barrier to infection, although we recently reported that endothelial cells allow intracellular GAS proliferation due to defective xenophagy. In this study, we revealed that administration of VEGF augmented both xenophagy and lysosomal activity in these cells, leading to the efficient killing of intracellular GAS. By comparison, the opposite relationship was observed in vivo, as low serum VEGF concentrations were accompanied by high-severity sepsis in both a mouse model and in human patients. Administration of VEGF reduced mortality in the GAS sepsis model. Based on these findings, we hypothesize that during acute infection, strong VEGF stimulation boosts the intracellular defense system of the endothelium to provide a stronger blood vessel barrier, thereby helping to prevent bacterial dissemination.


Assuntos
Sepse , Streptococcus pyogenes , Animais , Autofagia , Células Endoteliais/microbiologia , Humanos , Lisossomos , Camundongos , Streptococcus pyogenes/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Front Immunol ; 13: 868724, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603169

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging virus responsible for the ongoing COVID-19 pandemic. SARS-CoV-2 binds to the human cell receptor angiotensin-converting enzyme 2 (ACE2) through its receptor-binding domain in the S1 subunit of the spike protein (S1-RBD). The serum levels of autoantibodies against ACE2 are significantly higher in patients with COVID-19 than in controls and are associated with disease severity. However, the mechanisms through which these anti-ACE2 antibodies are induced during SARS-CoV-2 infection are unclear. In this study, we confirmed the increase in antibodies against ACE2 in patients with COVID-19 and found a positive correlation between the amounts of antibodies against ACE2 and S1-RBD. Moreover, antibody binding to ACE2 was significantly decreased in the sera of some COVID-19 patients after preadsorption of the sera with S1-RBD, which indicated that antibodies against S1-RBD can cross-react with ACE2. To confirm this possibility, two monoclonal antibodies (mAbs 127 and 150) which could bind to both S1-RBD and ACE2 were isolated from S1-RBD-immunized mice. Measurement of the binding affinities by Biacore showed these two mAbs bind to ACE2 much weaker than binding to S1-RBD. Epitope mapping using synthetic overlapping peptides and hydrogen deuterium exchange mass spectrometry (HDX-MS) revealed that the amino acid residues P463, F464, E465, R466, D467 and E471 of S1-RBD are critical for the recognition by mAbs 127 and 150. In addition, Western blotting analysis showed that these mAbs could recognize ACE2 only in native but not denatured form, indicating the ACE2 epitopes recognized by these mAbs were conformation-dependent. The protein-protein interaction between ACE2 and the higher affinity mAb 127 was analyzed by HDX-MS and visualized by negative-stain transmission electron microscopy imaging combined with antigen-antibody docking. Together, our results suggest that ACE2-cross-reactive anti-S1-RBD antibodies can be induced during SARS-CoV-2 infection due to potential antigenic cross-reactivity between S1-RBD and its receptor ACE2.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Animais , Anticorpos Monoclonais , Anticorpos Antivirais , Humanos , Camundongos , Pandemias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
6.
PLoS Pathog ; 18(4): e1010469, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35486576

RESUMO

Dengue virus (DENV) which infects about 390 million people per year in tropical and subtropical areas manifests various disease symptoms, ranging from fever to life-threatening hemorrhage and even shock. To date, there is still no effective treatment for DENV disease, but only supportive care. DENV nonstructural protein 1 (NS1) has been shown to play a key role in disease pathogenesis. Recent studies have shown that anti-DENV NS1 antibody can provide disease protection by blocking the DENV-induced disruption of endothelial integrity. We previously demonstrated that anti-NS1 monoclonal antibody (mAb) protected mice from all four serotypes of DENV challenge. Here, we generated humanized anti-NS1 mAbs and transferred them to mice after DENV infection. The results showed that DENV-induced prolonged bleeding time and skin hemorrhage were reduced, even several days after DENV challenge. Mechanistic studies showed the ability of humanized anti-NS1 mAbs to inhibit NS1-induced vascular hyperpermeability and to elicit Fcγ-dependent complement-mediated cytolysis as well as antibody-dependent cellular cytotoxicity of cells infected with four serotypes of DENV. These results highlight humanized anti-NS1 mAb as a potential therapeutic agent in DENV infection.


Assuntos
Vírus da Dengue , Dengue , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Dengue/prevenção & controle , Modelos Animais de Doenças , Hemorragia/etiologia , Humanos , Camundongos , Proteínas não Estruturais Virais/metabolismo
7.
Vaccine ; 40(15): 2299-2310, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35287985

RESUMO

There is an urgent need for a safe and effective vaccine against dengue virus (DENV) which infects about 390 million humans per year. In the present study we combined modifications of two DENV proteins, the nonstructural protein 1 (NS1) and the envelope (E) protein, to produce a DENV vaccine candidate with enhanced features. One of these modified proteins was a C-terminal-deleted fragment of NS1 called ΔC NS1 which we have shown previously to be protective without the potentially harmful effects of cross-reactive epitopes common to surface antigens on platelets and endothelial cells. The other modified protein was an envelope protein domain III (cEDIII) containing a consensus amino acid sequence among the four serotypes of DENV, which induces neutralizing antibody against all four DENV serotypes. The cEDIII and ΔC NS1 were expressed as a fusion protein cEDIII-ΔC NS1 and its protective effects against DENV were evaluated in a mouse model. C3H/HeN mice were immunized three times with cEDIII-ΔC NS1 fusion protein mixed with alum as adjuvant. Sera collected from cEDIII-ΔC NS1-immunized mice neutralized four serotypes of DENV and also caused complement-mediated cytolysis of HMEC-1 cells infected with each of the four different DENV serotypes. Mice immunized with cEDIII-ΔC NS1 and challenged with DENV showed reduced serum virus titer, soluble NS1 and bleeding time, compared with mice infected with DENV alone. The results reveal that antibodies induced by cEDIII-ΔC NS1 not only show anti-viral efficacy by in vitro assays but also provide protective effects against DENV infection in a mouse model. The cEDIII-ΔC NS1 thus represents a novel, effective DENV vaccine candidate.


Assuntos
Vacinas contra Dengue , Vírus da Dengue , Dengue , Animais , Anticorpos Antivirais , Consenso , Vacinas contra Dengue/genética , Células Endoteliais , Camundongos , Camundongos Endogâmicos C3H , Domínios Proteicos , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/genética
8.
Front Cell Dev Biol ; 9: 741820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552935

RESUMO

Galectin-1 (Gal-1) is a secretory lectin with pro-tumor activities and is associated strongly with hepatocellular carcinoma (HCC) development. Although Gal-1 is a well-known soluble pro-tumor factor in the tumor microenvironment (TME), the secretion mode of Gal-1 is not clearly defined. On the other hand, in addition to cancer cells, Gal-1 is widely expressed in tumor stromal cells, including tumor-associated macrophages (TAMs). TAMs are a significant component of stromal cells in TME; however, their contributions in producing Gal-1 to TME are still not explored. Here we reveal that TAMs can actively secrete Gal-1 in response to stimuli of HCC cells. Gal-1 produced by TAMs leads to an increase of the systemic level of Gal-1 and HCC tumor growth in mice. Mechanistically, TLR2-dependent secretory autophagy is found to be responsible for Gal-1 secretion from TAMs. Gal-1 acts as a cargo of autophagosomes to fuse with multivesicular bodies via Rab11 and VAMP7-mediated vesicle trafficking before being secreted. This autophagy-regulated Gal-1 secretion in TAMs correlates to poor overall survival and progression-free survival rates of HCC patients. Our findings uncover the secretion mode of Gal-1 via secretory autophagy and highlight the pathological role of TAM-produced Gal-1 in HCC progression.

10.
J Microbiol Immunol Infect ; 54(6): 1086-1093, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32994137

RESUMO

BACKGROUND: Group A Streptococcus (GAS) is an important pathogen causing morbidity and mortality worldwide. Surveillance of resistance and emm type has important implication to provide helpful information on the changing GAS epidemiology and empirical treatment. METHODS: To study the emergence of resistant GAS in children with upper respiratory tract infection (URTI), a retrospective study was conducted from 2000 to 2019 in southern Taiwan. Microbiological studies, including antibiotic susceptibility, were performed. GAS emm types and sequences were determined by molecular methods. The population was divided into two separate decades to analyze potential changes over time. The 1st decade was 2000-2009; the 2nd decade was 2010-2019. Multivariate analyses were performed to identify independent risk factors associated with macrolide resistance between these periods. RESULTS: A total of 320 GAS from 339 children were enrolled. Most of the children (75%) were under 9 years of age. The most common diagnosis was scarlet fever (225, 66.4%), and the frequency increased from 54.8% in the 1st to 77.9% in the 2nd decade (p < 0.0001). There was a significant increase in resistance to erythromycin and azithromycin from 18.1%, 19.3% in the 1st to 58.4%, 61.0% in the 2nd decade (p < 0.0001). This was associated with clonal expansion of the GAS emm12-ST36 which carrying erm(B) and tet(M) from 3.0% in the 1st to 53.2% in the 2nd decade (p < 0.0001). CONCLUSIONS: Significant emergence of macrolide-resistant GAS emm12-ST36 in children supports the need for continuing surveillance and investigation for the clonal virulence.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Macrolídeos/farmacologia , Streptococcus pyogenes/efeitos dos fármacos , Proteínas de Bactérias/genética , Criança , Pré-Escolar , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Feminino , Humanos , Masculino , Prevalência , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/microbiologia , Estudos Retrospectivos , Fatores de Risco , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/classificação , Streptococcus pyogenes/genética , Streptococcus pyogenes/isolamento & purificação , Taiwan/epidemiologia
11.
Int J Mol Sci ; 21(24)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352639

RESUMO

Dengue virus (DENV) infection is a significant public health threat in tropical and subtropical regions; however, there is no specific antiviral drug. Accumulated studies have revealed that DENV infection induces several cellular responses, including autophagy and apoptosis. The crosstalk between autophagy and apoptosis is associated with the interactions among components of these two pathways, such as apoptotic caspase-mediated cleavage of autophagy-related proteins. Here, we show that DENV-induced autophagy inhibits early cell apoptosis and hence enhances DENV replication. Later, the apoptotic activities are elevated to suppress autophagy through cleavage of Beclin-1, an essential autophagy-related protein. Inhibition of cleavage of Beclin-1 by a pan-caspase inhibitor, Z-VAD, increases both autophagy and viral replication. Regarding the mechanism, we further found that DENV nonstructural protein 1 (NS1) is able to interact with Beclin-1 during DENV infection. The interaction between Beclin-1 and NS1 attenuates Beclin-1 cleavage and facilitates autophagy to prevent cell apoptosis. Our study suggests a novel mechanism whereby NS1 preserves Beclin-1 for maintaining autophagy to antagonize early cell apoptosis; however, elevated caspases trigger apoptosis by degrading Beclin-1 in the late stage of infection. These findings suggest implications for anti-DENV drug design.


Assuntos
Proteína Beclina-1/metabolismo , Caspases/metabolismo , Vírus da Dengue/isolamento & purificação , Dengue/patologia , Dengue/virologia , Proteínas não Estruturais Virais/metabolismo , Células A549 , Aedes , Animais , Autofagia , Dengue/metabolismo , Humanos
12.
Sci Rep ; 10(1): 13582, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32788720

RESUMO

In many human cancers, including hepatocellular carcinoma (HCC), high density of infiltrating tumor-associated macrophages (TAM) is associated with poor prognosis. Most TAMs express a M2 phenotype subsequently supporting tumor growth. How tumor cells polarize these TAMs to a pro-tumor M2 phenotype is still poorly understood. Our previous studies have revealed that a Toll-like receptor 2 (TLR2)-dependent autophagy triggered by hepatoma-derived factors down-regulates NF-κB p65 and drives M2 macrophage differentiation. However, the underlying mechanisms and potential hepatoma-derived TLR2 ligands are not clear. Here, we provide evidence to reveal that NADPH oxidase 2 (NOX2)-dependent reactive oxygen species (ROS) generation is crucial for HCC-induced autophagy, NF-κB p65 down-regulation and M2 phenotype polarization in primary macrophages. This NOX2-generated ROS production in abolished in TLR2-deficient macrophages. HCC-derived or recombinant high-mobility group box 1 (HMGB1) is able to trigger this TLR2-mediated M2 macrophage polarization. Blockage of HMGB1 and ROS by inhibitors, ethyl pyruvate and N-acetylcysteine amide, respectively, significantly reduces both M2 macrophage accumulation and liver nodule formation in HCC-bearing mice. Our findings uncover a HMGB1/TLR2/NOX2/autophagy axis to trigger M2 macrophage polarization in HCC that can be considered as a novel therapeutic target for treating HCC.


Assuntos
Autofagia , Carcinoma Hepatocelular/metabolismo , Proteína HMGB1/metabolismo , Neoplasias Hepáticas/metabolismo , Macrófagos/metabolismo , NADPH Oxidase 2/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Células Cultivadas , Células HEK293 , Humanos , Neoplasias Hepáticas/patologia , Ativação de Macrófagos , Macrófagos/classificação , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Receptor 2 Toll-Like/genética
13.
Kaohsiung J Med Sci ; 36(11): 911-919, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32783363

RESUMO

We previously reported that dengue virus (DENV)-induced autophagy plays a promoting role in viral replication and pathogenesis both in vitro and in vivo. Although it is known that DENV infection increases glycolysis, which promotes viral replication, the role of glucose metabolism together with autophagic activity in DENV replication remains unclear. In this study, we reveal that DENV2 infection increased autophagic activity, glucose uptake, protein levels of glucose transporter-1 (GLUT1), and glycolysis rate-limiting enzyme hexokinase-2 (HK2) in cells. Furthermore, the protein levels of LC3-II and HK2 were increased in the brain tissues of the DENV2-infected suckling mice. However, DENV2 infection decreased ATP level and showed no effect on mRNA expression of HK2 and phosphofructokinase, as well as lactate production, indicating that DENV2-regulated glycolytic flux occurs at the post-transcriptional level and is lactate pathway-independent. Moreover, amiodarone-induced autophagic activity, glucose uptake, HK2 level, and viral titer were reversed by the autophagy inhibitor spautin-1 or silencing of Atg5 gene expression. Intriguingly, blocking of glycolysis, HK2 protein level, and viral titer were accordingly decreased, but autophagic activity was increased, suggesting the existence of another regulation mechanism that influences the relationship between glycolysis and autophagy. This is the first report to reveal that DENV2-induced autophagy positively regulates glycolysis and viral replication in vitro and in vivo. Our findings open a new avenue wherein metabolic modulation could be used as a target for the treatment of DENV infection.


Assuntos
Autofagia/genética , Vírus da Dengue/genética , Dengue/genética , Regulação da Expressão Gênica , Glucose/metabolismo , Interações Hospedeiro-Patógeno/genética , Células A549 , Amiodarona/farmacologia , Animais , Animais Recém-Nascidos , Autofagia/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/antagonistas & inibidores , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Benzilaminas/farmacologia , Transporte Biológico , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/virologia , Chlorocebus aethiops , Dengue/metabolismo , Dengue/patologia , Dengue/virologia , Vírus da Dengue/crescimento & desenvolvimento , Vírus da Dengue/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/genética , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos ICR , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfofrutoquinases/genética , Fosfofrutoquinases/metabolismo , Quinazolinas/farmacologia , Transdução de Sinais , Células Vero , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
14.
Front Microbiol ; 11: 117, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117141

RESUMO

Group A streptococcus (GAS) is a versatile pathogen that causes a wide spectrum of diseases in humans. Invading host cells is a known strategy for GAS to avoid antibiotic killing and immune recognition. However, the underlying mechanisms of GAS resistance to intracellular killing need to be explored. Endothelial HMEC-1 cells were infected with GAS, methicillin-resistant Staphylococcus aureus (MRSA) and Salmonella Typhimurium under nicotinamide (NAM)-supplemented conditions. The intracellular NAD+ level and cell viability were respectively measured by NAD+ quantification kit and protease-based cytotoxicity assay. Moreover, the intracellular bacteria were analyzed by colony-forming assay, transmission electron microscopy, and confocal microscopy. We found that supplementation with exogenous nicotinamide during infection significantly inhibited the growth of intracellular GAS in endothelial cells. Moreover, the NAD+ content and NAD+/NADH ratio of GAS-infected endothelial cells were dramatically increased, whereas the cell cytotoxicity was decreased by exogenous nicotinamide treatment. After knockdown of the autophagy-related ATG9A, the intracellular bacterial load was increased in nicotinamide-treated endothelial cells. The results of Western blot and transmission electron microscopy also revealed that cells treated with nicotinamide can increase autophagy-associated LC3 conversion and double-membrane formation during GAS infection. Confocal microscopy images further showed that more GAS-containing vacuoles were colocalized with lysosome under nicotinamide-supplemented conditions than without nicotinamide treatment. In contrast to GAS, supplementation with exogenous nicotinamide did not effectively inhibit the growth of MRSA or S. Typhimurium in endothelial cells. These results indicate that intracellular NAD+ homeostasis is crucial for controlling intracellular GAS infection in endothelial cells. In addition, nicotinamide may be a potential new therapeutic agent to overcome persistent infections of GAS.

15.
Acta Neuropathol Commun ; 8(1): 6, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32000863

RESUMO

Human WWOX gene resides in the chromosomal common fragile site FRA16D and encodes a tumor suppressor WW domain-containing oxidoreductase. Loss-of-function mutations in both alleles of WWOX gene lead to autosomal recessive abnormalities in pediatric patients from consanguineous families, including microcephaly, cerebellar ataxia with epilepsy, mental retardation, retinal degeneration, developmental delay and early death. Here, we report that targeted disruption of Wwox gene in mice causes neurodevelopmental disorders, encompassing abnormal neuronal differentiation and migration in the brain. Cerebral malformations, such as microcephaly and incomplete separation of the hemispheres by a partial interhemispheric fissure, neuronal disorganization and heterotopia, and defective cerebellar midline fusion are observed in Wwox-/- mice. Degenerative alterations including severe hypomyelination in the central nervous system, optic nerve atrophy, Purkinje cell loss and granular cell apoptosis in the cerebellum, and peripheral nerve demyelination due to Schwann cell apoptosis correspond to reduced amplitudes and a latency prolongation of transcranial motor evoked potentials, motor deficits and gait ataxia in Wwox-/- mice. Wwox gene ablation leads to the occurrence of spontaneous epilepsy and increased susceptibility to pilocarpine- and pentylenetetrazol (PTZ)-induced seizures in preweaning mice. We determined that a significantly increased activation of glycogen synthase kinase 3ß (GSK3ß) occurs in Wwox-/- mouse cerebral cortex, hippocampus and cerebellum. Inhibition of GSK3ß by lithium ion significantly abolishes the onset of PTZ-induced seizure in Wwox-/- mice. Together, our findings reveal that the neurodevelopmental and neurodegenerative deficits in Wwox knockout mice strikingly recapitulate the key features of human neuropathies, and that targeting GSK3ß with lithium ion ameliorates epilepsy.


Assuntos
Encéfalo/enzimologia , Encéfalo/patologia , Epilepsia/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Transtornos do Neurodesenvolvimento/genética , Convulsões/genética , Oxidorredutase com Domínios WW/genética , Animais , Movimento Celular , Epilepsia/enzimologia , Camundongos Knockout , Transtornos do Neurodesenvolvimento/enzimologia , Neurônios/patologia , Nervos Periféricos/ultraestrutura , Tratos Piramidais/fisiopatologia , Células de Schwann/patologia , Convulsões/enzimologia
16.
mBio ; 10(5)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575768

RESUMO

Group A streptococcus (GAS) is an important human pathogen which can cause fatal diseases after invasion into the bloodstream. Although antibiotics and immune surveillance are the main defenses against GAS infection, GAS utilizes internalization into cells as a major immune evasion strategy. Our previous findings revealed that light chain 3 (LC3)-associated single membrane GAS-containing vacuoles in endothelial cells are compromised for bacterial clearance due to insufficient acidification after fusion with lysosomes. However, the characteristics and the activation mechanisms of these LC3-positive compartments are still largely unknown. In the present study, we demonstrated that the LC3-positive GAS is surrounded by single membrane and colocalizes with NADPH oxidase 2 (NOX2) complex but without ULK1, which are characteristics of LC3-associated phagocytosis (LAP). Inhibition of NOX2 or reactive oxygen species (ROS) significantly reduces GAS multiplication and enhances autolysosome acidification in endothelial cells through converting LAP to conventional xenophagy, which is revealed by enhancement of ULK1 recruitment, attenuation of p70s6k phosphorylation, and formation of the isolation membrane. We also clarify that the inactivation of mTORC1, which is the initiation signal of autophagy, is inhibited by NOX2- and ROS-activated phosphatidylinositol 3-kinase (PI3K)/AKT and MEK/extracellular signal-regulated kinase (ERK) pathways. In addition, streptolysin O (SLO) of GAS is identified as a crucial inducer of ROS for ß1 integrin-mediated LAP induction. After downregulation of ß1 integrin, GAS multiplication is reduced, accompanied with LAP inhibition and xenophagy induction. These results demonstrate that GAS infection preferentially induces ineffective LAP to evade xenophagic killing in endothelial cells through the SLO/ß1 integrin/NOX2/ROS pathway.IMPORTANCE Our previous reports showed that the LC3-associated GAS-containing single membrane vacuoles are inefficient for bacterial clearance in endothelial cells, which may result in bacteremia. However, the characteristics and the induction mechanisms of these LC3-positive vacuoles are still largely unknown. Here we provide the first evidence that these LC3-positive GAS-containing single membrane compartments appear to be LAPosomes, which are induced by NOX2 and ROS. Through NOX2- and ROS-mediated signaling, GAS preferentially induces LAP and inhibits bacteriostatic xenophagy in endothelial cells. We also provide the first demonstration that ß1 integrin acts as the receptor for LAP induction through GAS-produced SLO stimulation in endothelial cells. Our findings reveal the underlying mechanisms of LAP induction and autophagy evasion for GAS multiplication in endothelial cells.


Assuntos
Células Endoteliais/microbiologia , Macroautofagia , Streptococcus pyogenes/fisiologia , Estreptolisinas/metabolismo , Proteínas de Bactérias/metabolismo , Linhagem Celular , Humanos , Integrina beta1/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , NADPH Oxidase 2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vacúolos/metabolismo
17.
Front Immunol ; 10: 2147, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620121

RESUMO

Thioredoxin-interacting protein (Txnip) inhibits the activity of thioredoxin (Trx) to modulate inflammatory responses. The burden of inflammation caused by microbial infection is strongly associated with disease severity; however, the role of Txnip in bacterial infection remains unclear. In Group A Streptococcus (GAS)-infected macrophages, Txnip was degraded independent of glucose consumption and streptococcal cysteine protease expression. Treatment with proteasome inhibitors reversed GAS-induced Txnip degradation. The activation of Toll-like receptor 2 (TLR2) initiated Txnip degradation, while no further Txnip degradation was observed in TLR2-deficient bone marrow-derived macrophages. NADPH oxidase-regulated NF-κB activation and pro-inflammatory activation were induced and accompanied by Txnip degradation during GAS infection. Silencing Txnip prompted TLR2-mediated inducible nitric oxide synthase (iNOS)/NO, TNF-α, and IL-6 production whereas the blockage of Txnip degradation by pharmacologically inhibiting the HECT E3 ubiquitin ligase with heclin and AMP-dependent protein kinase with dorsomorphin effectively reduced such effects. Our findings reveal that TLR2/NADPH oxidase-mediated Txnip proteasomal degradation facilitates pro-inflammatory cytokine production during GAS infection.


Assuntos
Proteínas de Transporte/metabolismo , Inflamação/metabolismo , Infecções Estreptocócicas/metabolismo , Tiorredoxinas/metabolismo , Receptor 2 Toll-Like/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas de Transporte/imunologia , Inflamação/imunologia , Camundongos , Células RAW 264.7 , Infecções Estreptocócicas/imunologia , Tiorredoxinas/imunologia , Ubiquitina-Proteína Ligases/imunologia
18.
J Immunol ; 203(7): 1909-1917, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31451673

RESUMO

Dengue virus (DENV) causes a range of illness, including dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. DENV nonstructural protein (NS) 1 has been considered to be a desirable vaccine candidate for its ability to induce Ab and complement-dependent cytolysis of DENV-infected cells as well as to block the pathogenic effects of NS1. However a potential drawback of NS1 as a vaccine is that anti-DENV NS1 Abs can lead to endothelial cell damage and platelet dysfunction by antigenic cross-reactivity. Therefore, we modified the DENV NS1 by replacing the C-terminal cross-reactive epitopes with the corresponding region of Japanese encephalitis virus NS1 to generate a chimeric DJ NS1 protein. Active immunization with DJ NS1 induced a strong Ab response. To enhance cellular immunity, we further combined DJ NS1 with DENV NS3 to immunize mice and showed activation of Ag-specific CD4+ and CD8+ T cells in addition to Ab responses. We further detected NS3-specific CTL activities as well as CD107a expression of effector cells. Importantly, the protective effects attributed by DJ NS1 and NS3 immunization were demonstrated in a DENV-infected mouse model by reduced viral titers, soluble NS1 levels, mouse tail bleeding time, and vascular leakage at skin injection sites. Collectively, the results from this study reveal the humoral and cellular immune responses and the protective effects conferred by DJ NS1 and NS3 immunization in the mouse model of DENV infection and provide a potential strategy for dengue vaccine design.


Assuntos
Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Dengue/prevenção & controle , Imunidade Celular , Imunização , Proteínas não Estruturais Virais/imunologia , Animais , Reações Cruzadas , Dengue/imunologia , Dengue/patologia , Epitopos/imunologia , Masculino , Camundongos
19.
PLoS Pathog ; 15(4): e1007625, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31009511

RESUMO

Dengue virus (DENV) infection, the most common mosquito-transmitted viral infection, can cause a range of diseases from self-limiting dengue fever to life-threatening dengue hemorrhagic fever and shock syndrome. Thrombocytopenia is a major characteristic observed in both mild and severe dengue disease and is significantly correlated with the progression of dengue severity. Previous studies have shown that DENV nonstructural protein 1 (NS1), which can be secreted into patients' blood, can stimulate immune cells via Toll-like receptor 4 (TLR4) and can cause endothelial leakage. However, it is unclear whether DENV NS1 can directly induce platelet activation or cause thrombocytopenia during DENV infection. In this study, we first demonstrated that DENV but not Zika virus cell culture supernatant could induce P-selectin expression and phosphatidylserine (PS) exposure in human platelets, both of which were abolished when NS1 was depleted from the DENV supernatant. Similar results were found using recombinant NS1 from all four serotypes of DENV, and those effects were blocked in the presence of anti-NS1 F(ab')2, anti-TLR4 antibody, a TLR4 antagonist (Rhodobacter sphaeroides lipopolysaccharide, LPS-Rs) and a TLR4 signaling inhibitor (TAK242), but not polymyxin B (an LPS inhibitor). Moreover, the activation of platelets by DENV NS1 promoted subthreshold concentrations of adenosine diphosphate (ADP)-induced platelet aggregation and enhanced platelet adhesion to endothelial cells and phagocytosis by macrophages. Finally, we demonstrated that DENV-induced thrombocytopenia and hemorrhage were attenuated in TLR4 knockout and wild-type mice when NS1 was depleted from DENV supernatant. Taken together, these results suggest that the binding of DENV NS1 to TLR4 on platelets can trigger its activation, which may contribute to thrombocytopenia and hemorrhage during dengue infection.


Assuntos
Plaquetas/imunologia , Dengue/complicações , Hemorragia/etiologia , Macrófagos/imunologia , Trombocitopenia/etiologia , Receptor 4 Toll-Like/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Plaquetas/metabolismo , Plaquetas/patologia , Células Cultivadas , Dengue/metabolismo , Dengue/virologia , Vírus da Dengue/imunologia , Hemorragia/metabolismo , Hemorragia/patologia , Humanos , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Fagocitose , Trombocitopenia/metabolismo , Trombocitopenia/patologia
20.
Sci Rep ; 9(1): 5371, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926881

RESUMO

Group A Streptococcus (GAS) infection is associated with a variety of human diseases. Previous studies indicate GAS infection leads to RAW264.7 cell death, but the mechanism is unclear. Here, analyzing the timing of reactive oxygen species (ROS) production and using mitochondrial ROS scavenger, we found the wild type GAS-induced RAW264.7 cell death was associated with mitochondrial ROS. The wild type GAS infection could activate glycogen synthase kinase-3ß (GSK-3ß). Inhibition of GSK-3ß activity by lithium chloride or decreasing GSK-3ß expression by lentivirus-mediated short hairpin RNA for GSK-3ß could not only decrease the wild type GAS-induced mitochondrial ROS generation, mitochondria damage and cell death, but also reduced GAS intracellular replication. Streptolysin S (SLS), a GAS toxin, played the important role on GAS-induced macrophage death. Compared to the wild type GAS with its isogenic sagB mutant (SLS mutant)-infected macrophages, we found sagB mutant infection caused less mitochondrial ROS generation and cell death than those of the wild type GAS-infected ones. Furthermore, the sagB mutant, but not the wild type or the sagB-complementary mutant, could induce GSK-3ß degradation via a proteasome-dependent pathway. These results suggest that a new mechanism of SLS-induced macrophage death was through inhibiting GSK-3ß degradation and further enhancing mitochondrial damage.


Assuntos
Proteínas de Bactérias/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Macrófagos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Infecções Estreptocócicas/metabolismo , Streptococcus pyogenes/metabolismo , Estreptolisinas/farmacologia , Animais , Camundongos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Infecções Estreptocócicas/enzimologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...